3.161 \(\int \frac{a+b \sinh ^{-1}(c x)}{x (d+c^2 d x^2)^{3/2}} \, dx\)

Optimal. Leaf size=194 \[ -\frac{b \sqrt{c^2 x^2+1} \text{PolyLog}\left (2,-e^{\sinh ^{-1}(c x)}\right )}{d \sqrt{c^2 d x^2+d}}+\frac{b \sqrt{c^2 x^2+1} \text{PolyLog}\left (2,e^{\sinh ^{-1}(c x)}\right )}{d \sqrt{c^2 d x^2+d}}+\frac{a+b \sinh ^{-1}(c x)}{d \sqrt{c^2 d x^2+d}}-\frac{2 \sqrt{c^2 x^2+1} \tanh ^{-1}\left (e^{\sinh ^{-1}(c x)}\right ) \left (a+b \sinh ^{-1}(c x)\right )}{d \sqrt{c^2 d x^2+d}}-\frac{b \sqrt{c^2 x^2+1} \tan ^{-1}(c x)}{d \sqrt{c^2 d x^2+d}} \]

[Out]

(a + b*ArcSinh[c*x])/(d*Sqrt[d + c^2*d*x^2]) - (b*Sqrt[1 + c^2*x^2]*ArcTan[c*x])/(d*Sqrt[d + c^2*d*x^2]) - (2*
Sqrt[1 + c^2*x^2]*(a + b*ArcSinh[c*x])*ArcTanh[E^ArcSinh[c*x]])/(d*Sqrt[d + c^2*d*x^2]) - (b*Sqrt[1 + c^2*x^2]
*PolyLog[2, -E^ArcSinh[c*x]])/(d*Sqrt[d + c^2*d*x^2]) + (b*Sqrt[1 + c^2*x^2]*PolyLog[2, E^ArcSinh[c*x]])/(d*Sq
rt[d + c^2*d*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.30334, antiderivative size = 194, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 7, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.269, Rules used = {5755, 5764, 5760, 4182, 2279, 2391, 203} \[ -\frac{b \sqrt{c^2 x^2+1} \text{PolyLog}\left (2,-e^{\sinh ^{-1}(c x)}\right )}{d \sqrt{c^2 d x^2+d}}+\frac{b \sqrt{c^2 x^2+1} \text{PolyLog}\left (2,e^{\sinh ^{-1}(c x)}\right )}{d \sqrt{c^2 d x^2+d}}+\frac{a+b \sinh ^{-1}(c x)}{d \sqrt{c^2 d x^2+d}}-\frac{2 \sqrt{c^2 x^2+1} \tanh ^{-1}\left (e^{\sinh ^{-1}(c x)}\right ) \left (a+b \sinh ^{-1}(c x)\right )}{d \sqrt{c^2 d x^2+d}}-\frac{b \sqrt{c^2 x^2+1} \tan ^{-1}(c x)}{d \sqrt{c^2 d x^2+d}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcSinh[c*x])/(x*(d + c^2*d*x^2)^(3/2)),x]

[Out]

(a + b*ArcSinh[c*x])/(d*Sqrt[d + c^2*d*x^2]) - (b*Sqrt[1 + c^2*x^2]*ArcTan[c*x])/(d*Sqrt[d + c^2*d*x^2]) - (2*
Sqrt[1 + c^2*x^2]*(a + b*ArcSinh[c*x])*ArcTanh[E^ArcSinh[c*x]])/(d*Sqrt[d + c^2*d*x^2]) - (b*Sqrt[1 + c^2*x^2]
*PolyLog[2, -E^ArcSinh[c*x]])/(d*Sqrt[d + c^2*d*x^2]) + (b*Sqrt[1 + c^2*x^2]*PolyLog[2, E^ArcSinh[c*x]])/(d*Sq
rt[d + c^2*d*x^2])

Rule 5755

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> -Simp
[((f*x)^(m + 1)*(d + e*x^2)^(p + 1)*(a + b*ArcSinh[c*x])^n)/(2*d*f*(p + 1)), x] + (Dist[(m + 2*p + 3)/(2*d*(p
+ 1)), Int[(f*x)^m*(d + e*x^2)^(p + 1)*(a + b*ArcSinh[c*x])^n, x], x] + Dist[(b*c*n*d^IntPart[p]*(d + e*x^2)^F
racPart[p])/(2*f*(p + 1)*(1 + c^2*x^2)^FracPart[p]), Int[(f*x)^(m + 1)*(1 + c^2*x^2)^(p + 1/2)*(a + b*ArcSinh[
c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && LtQ[p, -1] &&  !GtQ
[m, 1] && (IntegerQ[m] || IntegerQ[p] || EqQ[n, 1])

Rule 5764

Int[(((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Dist
[Sqrt[1 + c^2*x^2]/Sqrt[d + e*x^2], Int[((f*x)^m*(a + b*ArcSinh[c*x])^n)/Sqrt[1 + c^2*x^2], x], x] /; FreeQ[{a
, b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && GtQ[n, 0] &&  !GtQ[d, 0] && (IntegerQ[m] || EqQ[n, 1])

Rule 5760

Int[(((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Dist[1/(c^(m
 + 1)*Sqrt[d]), Subst[Int[(a + b*x)^n*Sinh[x]^m, x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[
e, c^2*d] && GtQ[d, 0] && IGtQ[n, 0] && IntegerQ[m]

Rule 4182

Int[csc[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(-2*(c + d*x)^m*Ar
cTanh[E^(-(I*e) + f*fz*x)])/(f*fz*I), x] + (-Dist[(d*m)/(f*fz*I), Int[(c + d*x)^(m - 1)*Log[1 - E^(-(I*e) + f*
fz*x)], x], x] + Dist[(d*m)/(f*fz*I), Int[(c + d*x)^(m - 1)*Log[1 + E^(-(I*e) + f*fz*x)], x], x]) /; FreeQ[{c,
 d, e, f, fz}, x] && IGtQ[m, 0]

Rule 2279

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{a+b \sinh ^{-1}(c x)}{x \left (d+c^2 d x^2\right )^{3/2}} \, dx &=\frac{a+b \sinh ^{-1}(c x)}{d \sqrt{d+c^2 d x^2}}+\frac{\int \frac{a+b \sinh ^{-1}(c x)}{x \sqrt{d+c^2 d x^2}} \, dx}{d}-\frac{\left (b c \sqrt{1+c^2 x^2}\right ) \int \frac{1}{1+c^2 x^2} \, dx}{d \sqrt{d+c^2 d x^2}}\\ &=\frac{a+b \sinh ^{-1}(c x)}{d \sqrt{d+c^2 d x^2}}-\frac{b \sqrt{1+c^2 x^2} \tan ^{-1}(c x)}{d \sqrt{d+c^2 d x^2}}+\frac{\sqrt{1+c^2 x^2} \int \frac{a+b \sinh ^{-1}(c x)}{x \sqrt{1+c^2 x^2}} \, dx}{d \sqrt{d+c^2 d x^2}}\\ &=\frac{a+b \sinh ^{-1}(c x)}{d \sqrt{d+c^2 d x^2}}-\frac{b \sqrt{1+c^2 x^2} \tan ^{-1}(c x)}{d \sqrt{d+c^2 d x^2}}+\frac{\sqrt{1+c^2 x^2} \operatorname{Subst}\left (\int (a+b x) \text{csch}(x) \, dx,x,\sinh ^{-1}(c x)\right )}{d \sqrt{d+c^2 d x^2}}\\ &=\frac{a+b \sinh ^{-1}(c x)}{d \sqrt{d+c^2 d x^2}}-\frac{b \sqrt{1+c^2 x^2} \tan ^{-1}(c x)}{d \sqrt{d+c^2 d x^2}}-\frac{2 \sqrt{1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right ) \tanh ^{-1}\left (e^{\sinh ^{-1}(c x)}\right )}{d \sqrt{d+c^2 d x^2}}-\frac{\left (b \sqrt{1+c^2 x^2}\right ) \operatorname{Subst}\left (\int \log \left (1-e^x\right ) \, dx,x,\sinh ^{-1}(c x)\right )}{d \sqrt{d+c^2 d x^2}}+\frac{\left (b \sqrt{1+c^2 x^2}\right ) \operatorname{Subst}\left (\int \log \left (1+e^x\right ) \, dx,x,\sinh ^{-1}(c x)\right )}{d \sqrt{d+c^2 d x^2}}\\ &=\frac{a+b \sinh ^{-1}(c x)}{d \sqrt{d+c^2 d x^2}}-\frac{b \sqrt{1+c^2 x^2} \tan ^{-1}(c x)}{d \sqrt{d+c^2 d x^2}}-\frac{2 \sqrt{1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right ) \tanh ^{-1}\left (e^{\sinh ^{-1}(c x)}\right )}{d \sqrt{d+c^2 d x^2}}-\frac{\left (b \sqrt{1+c^2 x^2}\right ) \operatorname{Subst}\left (\int \frac{\log (1-x)}{x} \, dx,x,e^{\sinh ^{-1}(c x)}\right )}{d \sqrt{d+c^2 d x^2}}+\frac{\left (b \sqrt{1+c^2 x^2}\right ) \operatorname{Subst}\left (\int \frac{\log (1+x)}{x} \, dx,x,e^{\sinh ^{-1}(c x)}\right )}{d \sqrt{d+c^2 d x^2}}\\ &=\frac{a+b \sinh ^{-1}(c x)}{d \sqrt{d+c^2 d x^2}}-\frac{b \sqrt{1+c^2 x^2} \tan ^{-1}(c x)}{d \sqrt{d+c^2 d x^2}}-\frac{2 \sqrt{1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right ) \tanh ^{-1}\left (e^{\sinh ^{-1}(c x)}\right )}{d \sqrt{d+c^2 d x^2}}-\frac{b \sqrt{1+c^2 x^2} \text{Li}_2\left (-e^{\sinh ^{-1}(c x)}\right )}{d \sqrt{d+c^2 d x^2}}+\frac{b \sqrt{1+c^2 x^2} \text{Li}_2\left (e^{\sinh ^{-1}(c x)}\right )}{d \sqrt{d+c^2 d x^2}}\\ \end{align*}

Mathematica [A]  time = 0.883428, size = 231, normalized size = 1.19 \[ \frac{\frac{b d \left (\sqrt{c^2 x^2+1} \text{PolyLog}\left (2,-e^{-\sinh ^{-1}(c x)}\right )-\sqrt{c^2 x^2+1} \text{PolyLog}\left (2,e^{-\sinh ^{-1}(c x)}\right )+\sqrt{c^2 x^2+1} \sinh ^{-1}(c x) \log \left (1-e^{-\sinh ^{-1}(c x)}\right )-\sqrt{c^2 x^2+1} \sinh ^{-1}(c x) \log \left (e^{-\sinh ^{-1}(c x)}+1\right )-2 \sqrt{c^2 x^2+1} \tan ^{-1}\left (\tanh \left (\frac{1}{2} \sinh ^{-1}(c x)\right )\right )+\sinh ^{-1}(c x)\right )}{\sqrt{c^2 d x^2+d}}+\frac{a \sqrt{c^2 d x^2+d}}{c^2 x^2+1}-a \sqrt{d} \log \left (\sqrt{d} \sqrt{c^2 d x^2+d}+d\right )+a \sqrt{d} \log (x)}{d^2} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*ArcSinh[c*x])/(x*(d + c^2*d*x^2)^(3/2)),x]

[Out]

((a*Sqrt[d + c^2*d*x^2])/(1 + c^2*x^2) + a*Sqrt[d]*Log[x] - a*Sqrt[d]*Log[d + Sqrt[d]*Sqrt[d + c^2*d*x^2]] + (
b*d*(ArcSinh[c*x] - 2*Sqrt[1 + c^2*x^2]*ArcTan[Tanh[ArcSinh[c*x]/2]] + Sqrt[1 + c^2*x^2]*ArcSinh[c*x]*Log[1 -
E^(-ArcSinh[c*x])] - Sqrt[1 + c^2*x^2]*ArcSinh[c*x]*Log[1 + E^(-ArcSinh[c*x])] + Sqrt[1 + c^2*x^2]*PolyLog[2,
-E^(-ArcSinh[c*x])] - Sqrt[1 + c^2*x^2]*PolyLog[2, E^(-ArcSinh[c*x])]))/Sqrt[d + c^2*d*x^2])/d^2

________________________________________________________________________________________

Maple [A]  time = 0.138, size = 274, normalized size = 1.4 \begin{align*}{\frac{a}{d}{\frac{1}{\sqrt{{c}^{2}d{x}^{2}+d}}}}-{a\ln \left ({\frac{1}{x} \left ( 2\,d+2\,\sqrt{d}\sqrt{{c}^{2}d{x}^{2}+d} \right ) } \right ){d}^{-{\frac{3}{2}}}}+{\frac{b{\it Arcsinh} \left ( cx \right ) }{{d}^{2} \left ({c}^{2}{x}^{2}+1 \right ) }\sqrt{d \left ({c}^{2}{x}^{2}+1 \right ) }}-2\,{\frac{b\sqrt{d \left ({c}^{2}{x}^{2}+1 \right ) }\arctan \left ( cx+\sqrt{{c}^{2}{x}^{2}+1} \right ) }{\sqrt{{c}^{2}{x}^{2}+1}{d}^{2}}}-{\frac{b}{{d}^{2}}\sqrt{d \left ({c}^{2}{x}^{2}+1 \right ) }{\it dilog} \left ( cx+\sqrt{{c}^{2}{x}^{2}+1} \right ){\frac{1}{\sqrt{{c}^{2}{x}^{2}+1}}}}-{\frac{b}{{d}^{2}}\sqrt{d \left ({c}^{2}{x}^{2}+1 \right ) }{\it dilog} \left ( 1+cx+\sqrt{{c}^{2}{x}^{2}+1} \right ){\frac{1}{\sqrt{{c}^{2}{x}^{2}+1}}}}-{\frac{b{\it Arcsinh} \left ( cx \right ) }{{d}^{2}}\sqrt{d \left ({c}^{2}{x}^{2}+1 \right ) }\ln \left ( 1+cx+\sqrt{{c}^{2}{x}^{2}+1} \right ){\frac{1}{\sqrt{{c}^{2}{x}^{2}+1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arcsinh(c*x))/x/(c^2*d*x^2+d)^(3/2),x)

[Out]

a/d/(c^2*d*x^2+d)^(1/2)-a/d^(3/2)*ln((2*d+2*d^(1/2)*(c^2*d*x^2+d)^(1/2))/x)+b*(d*(c^2*x^2+1))^(1/2)/d^2/(c^2*x
^2+1)*arcsinh(c*x)-2*b*(d*(c^2*x^2+1))^(1/2)/(c^2*x^2+1)^(1/2)/d^2*arctan(c*x+(c^2*x^2+1)^(1/2))-b*(d*(c^2*x^2
+1))^(1/2)/(c^2*x^2+1)^(1/2)/d^2*dilog(c*x+(c^2*x^2+1)^(1/2))-b*(d*(c^2*x^2+1))^(1/2)/(c^2*x^2+1)^(1/2)/d^2*di
log(1+c*x+(c^2*x^2+1)^(1/2))-b*(d*(c^2*x^2+1))^(1/2)/(c^2*x^2+1)^(1/2)/d^2*arcsinh(c*x)*ln(1+c*x+(c^2*x^2+1)^(
1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(c*x))/x/(c^2*d*x^2+d)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{c^{2} d x^{2} + d}{\left (b \operatorname{arsinh}\left (c x\right ) + a\right )}}{c^{4} d^{2} x^{5} + 2 \, c^{2} d^{2} x^{3} + d^{2} x}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(c*x))/x/(c^2*d*x^2+d)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(c^2*d*x^2 + d)*(b*arcsinh(c*x) + a)/(c^4*d^2*x^5 + 2*c^2*d^2*x^3 + d^2*x), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{a + b \operatorname{asinh}{\left (c x \right )}}{x \left (d \left (c^{2} x^{2} + 1\right )\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*asinh(c*x))/x/(c**2*d*x**2+d)**(3/2),x)

[Out]

Integral((a + b*asinh(c*x))/(x*(d*(c**2*x**2 + 1))**(3/2)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{b \operatorname{arsinh}\left (c x\right ) + a}{{\left (c^{2} d x^{2} + d\right )}^{\frac{3}{2}} x}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(c*x))/x/(c^2*d*x^2+d)^(3/2),x, algorithm="giac")

[Out]

integrate((b*arcsinh(c*x) + a)/((c^2*d*x^2 + d)^(3/2)*x), x)